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Dynamic Behaviour of an Elastic Orthotropic Shaft
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The dynamic behaviour of an orthotropic shaft leads to a nonlinear differential equation, Mathieu type,
whose solving is quite difficult. Certain problems in theoretical physics lead to Mathieu equation, particularly
the problem of the propagation of electromagnetic waves in a medium with a periodic structure, the problem
of the electrons’ motion in a crystal lattice in the quantum theory of metals. The parametric equation was
solved numerically for time history and was time integrated using Runge-Kutta method with initial boundary
values. The results show a totally different dynamic behaviour of the shaft made of an orthotropic material
compared with the one made of an isotropic material.
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It is well-known that a composite material is a material
made from two or more constituent materials with
significantly different physical or chemical properties that,
when combined, produce a material with characteristics
that differ from the individual components. The individual
components remain separate and distinct within the
finished structure [1].

The physical properties of composite materials are
generally not isotropic (independent of direction of applied
force) in nature, but rather are typically anisotropic (different
depending on the direction of the applied force or load).
For instance, the stiffness of a composite panel will often
depend upon the orientation of the applied forces and/or
moments. Panel stiffness is also dependent on the design
of the panel (for instance: the fiber reinforcement and
matrix used, the method of panel built, type of weave and
orientation of fiber axis to the primary force). In contrast,
isotropic materials in standard wrought forms, typically
have the same stiffness regardless of the directional
orientation of the applied forces and/or moments.

The relationship between forces/moments and strains/
curvatures for an isotropic material can be described with
the following material properties: Young’s Modulus, the
shear Modulus and the Poisson’s ratio, in relatively simple
mathematical relationships [2]. For the anisotropic
material, it requires the mathematics of a second order
tensor and up to 21 material property constants. For the
special case of orthogonal isotropy, there are three different
material property constants for each of Young’s Modulus,
Shear Modulus and Poisson’s ratio, a total of 9 constants to
describe the relationship between forces/moments and
strains/curvatures.

Advanced composite materials have unique mechanical
properties compared to steel, including fatigue strength,
specific strength (ratio of strength to weight), specific
rigidity (ratio of modulus of elasticity to weight), strength
redundancy and high resistance of damaged structures to
external loads. In contrast to metals, the crack resistance
of modern composite materials increases as strength
increases. The crack resistance of composite materials
depends on fiber tensile strength, matrix tensile strength
and bond shear strength. Fiber content is defined by
studying the cross-section of a specimen. The parameter
is equal to the ration of the total area of the unidirectional
fiber to the cross-sectional area of the specimen. Regarding

fiber reinforced matrices, the modulus of elasticity will
increase with larger hard fiber content [3].

In this paper a shaft made of an unidirectional composite
material, reinforced with carbon fiber, is considered. In the
cross-section of the shaft there are two different Young’s
Modulus, corresponding to two orthogonal directions. The
dynamic behaviour of an unidirectional composite material
shaft was studied in order to find out the differences
between this one and the classical steel shaft.

Mathematical model of an elastic orthotropic shaft
Taking into account the fact that the composites tend to

replace more and more the classical materials, so the
existing models do not correspond from the static and
dynamic point of view due to the modification of the
properties of the materials, it becomes necessary to find
new models to describe as well as possible the behaviour
of structures.

In a static behaviour the things are simpler, they are
more complicated in the dynamic one, and especially in
the case of a shaft made of an orthotropic material and set
in a rotation motion. The orthotropy of the material from
which the shaft is made, is due to the longitudinal
reinforcement with fibres whose layout leads to getting of
different elastic properties, related to two perpendicular
axes. The shaft, presented in figure 1, was considered to
be at rest. If, a force F acts perpendicularly on the axis of
the shaft, a linear desplacement on the force direction will
appear in a certain section. If the shaft has the diameter d
and the force is situated midway between the bearings,
where l is the irrespective distance, also knowing the
longitudinal elasticity module of the material E, the
displacement δ, at the midlle of the shaft, will be [4]:

                                     (1)

where I = πd4 / 64 represents the moment of inertia of the
cross section of the shaft. Further, consider a shaft made
of an orthotropic material, which, in cross-section, has
different modules of elasticity  Eu ≠  Ev. The frame XOY is a
fixed one, while the frame UOV is a rotating one, having a
rotational movement at the constant speed of the shaft. At
time t = 0 the force F coincides with the OV axis, resulting
the arrow δv, then, after the shaft has rotated by 90°, the
force F, which keeps its direction, will coincide with the
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OU axis, and the arrow will be δu (fig. 1-b). Corresponding
to the two arrows, the elastic constants of the shaft on the
two directions are:

                                           (2)

The shaft shown in figure 1, with circular section, made
of an orthotropic material, for which  Eu ≠  Ev and its
geometric centre being the point C, executes a precession
motion around of the bearings axis with the angular
velocity ω. In relation to two frames, one fixed XOY and a
rotating one UOV, the shaft shows different stiffnesses: kx,
ky and ku, kv (fig. 2).

At middistance between the bearings, there is a disk
with the mass m, that is attached to the shaft. The
geometric centre of the cross section of the shaft, the point
C, coincides with the centre of the rotating frame and, in
relation to the fixed frame, it has the coordinates x and y,
and in relation to the rotating one the coordinates u and v.
Between the vectors of the axes of the two frames there is
the following relation:

                              (3)

Considering the mass m concentrated in the centre of
gravity, point G, which is at the distance e (eccentricity)
towards the geometric centre, its speed is:

                                      (4)

where:
     

(5)

Taking into account the relationships (3), (4) and (5)
and using the writing in the matriceal form, it results:

                 

    (6)

But:

                             (7)

So:

                             (8)

From (8) result:

                                 (9)

Introducing the relationship (9) into (6) we get:

(10)

So, the speed of the point G was expressed both in
relationship with the fixed frame (the first part of the
relationship (6)), and in relationship with the rotating frame
(the last part of the relationship (10)).

Taking into account that νG
2 =νx

2+νy
2, one can express

the kinetic energy T = mνG
2 / 2 of the mass m, concentrated

in the point G, both in relationship with the fixed reference
system – the relation (11), and depending on the mobile
one – the relation (12).

                  

(11)

(12)

Using Lagrange, for the fixed reference system is
obtained:

            (13)

and for the mobile reference system:

Fig. 1. The orthotropic shaft and its cross
section

Fig. 2. The two frames of the
model
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(14)

Forces acting on the mass m are both the gravitational
forces Fg and the elastic forces Fe caused by the deformed
shaft. They can be expressed in every reference system
apart:

    (15)

        

    (16)

                                   (17)

    (18)

If we transpose the relation (7) we will get:

                     (19)

Substituting (19) in (18), the elastic force results in the
fixed frame:

   (20)

where

     (21)

Neglecting the damping of the bearings and considering
them as isotropic ones, with the value k, the forces of the
bearings Fb can be expressed in the two reference systems
(fixed - f and mobile - m):

                         (22)

We note with:

                         (23)

and taking into account the relation (13) to (17), (20) and
(22), the equations of motion of the centre of the shaft in a
matriceal form are:

- for the fixed reference system

     

   (24)

- for the mobile reference system

    

Solving the equations of motion
Equation (24) describes the nonlinear behaviour of the

precession motion of the shaft, made of an orthotropic
material, to a fixed reference system. It is a nonlinear
differential equation, Mathieu type, whose solving is difficult
and many prefer using the equation (25), for which there
are known mathematical solutions. The relatively easy
solving of the equation (25) shows  the disadvantage that
the solutions found are in relationship with the mobile
reference system, which rotates in the same time with
the shaft, and does not offer, under the circumstances, a
clear picture of the absolute precession movement, but a
relative one. In this article, we tried to find the solutions of
the equation (24) and this has been made possible by the
numerical methods for solving of this equation, by the
Runge-Kutta method. Firstly, the equation (24) was written
in a undimensional form, making the following substitution:

  (26)
from where it results:

                         (27)

Now we have four unknowns, the displacements and
the velocities corresponding to the two axes of the fixed
system of reference and they are described by the vector:

                                       (28)

Taking into account (26), (27) and (28), equation (24)
can be put in the form:

(29)

Equation (29) is a second order differential equation with
periodic coefficients, whose solution by Runge-Kutta
method requires knowing the initial value, at the moment
t = 0, of the four unknown given by (28). Numerical solution
was done in MATLAB, in which a cod based on relation
(29) was written, and where, among others, we used the
functions DEVAL and ODE45.

The instability of the system
It is well known that the Mathieu equations have both

stable and unstable solutions depending on the values of

(25)



MATERIALE PLASTICE ♦ 50♦ No. 2 ♦ 2013 http://www.revmaterialeplastice.ro 109

the equation coefficients. To study the instability of the
system described by the above equations were the terms
on the right side of equation (25) are considered null, a
situation that corresponds to a vertical rotor (g = 0) and
perfectly balanced (e = 0), so this corresponds to free
vibration:

       

(30)

Equation (30) has solutions of the form:

                                         (31)

Which, substituted in (30), leads to the following
characteristic equation:

    (32)
where

(33)

Fig. 3. The simulation results obtained
for ω = 70 rad/s compared to the fixed

frame

Fig. 4. The simulation results
obtained for ω = 110 rad/s compared

to the fixed frame
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The roots of the equation (32) are:

                 

(34)

Note that the expression under the radical is always
positive:

                    (35)

and so, the roots r1
2 and r2

2 are always real numbers. But if
ωu < ω < ωv then always the product 

Fig. 6. Simulation results obtained for ω
= 70 rad/s compared to the rotated

frame

Fig. 5. Simulation results obtained for ω
= 220 rad/s compared to the fixed frame

and   so 
and taking into account the relationship (31) it follows that,
for this range of the pulsation ω, the system has an
increasing solution over the time, becoming unstable.

Numerical simulation
To determine the dynamic properties (the orbits of the

precession movement, the frequency response curve,
finding the range of the instability etc.) of the system as a
Jeffcott rotor, made of an orthotropic material, we
performed a numerical simulation, for which we used the
following inputs: shaft diameter and length are d = 0.03
m, l = 1 m; mass m = 1 kg, with eccentricity e = 0.005 m,
is located midway between the bearings, which were
considered rigid; elasticity modules have values
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Fig. 7. The simulation results obtained for
ω = 220 rad/s compared to the rotated frame

corresponding to the two directions Eu = 7.6054x109 N/m,
Ev = 5.2816 x 109 N/m. Considering the relations (2) and
(33), we obtain two eigenvalues ωu = 120.4 rad/s and ωv =
100.3 rad/s, the irrespective natural frequencies fu = 19.1
Hz and fv = 15.9 Hz and the critical speed of the rotor ωcr1 =
954 rpm and ωcr2 = 1146 rpm. Numerical simulations were
performed for three different speeds corresponding to three
precession frequencies located in three areas of the range
of values  ω1 < ωcr1 < ω2 < ωcr2 < ω3. For all simulations we
considered the following initial conditions

.
Both for the fixed reference system and for the mobile

one, numerical simulations were performed at the angular
velocities ω1 = 70 rad/s, ω2 = 110 rad/s and  ω3 =  220  rad/
s. The results are shown in figures 3-7 as it follows: figures
3, 4 and 5 correspond to the fixed reference system, and
figures 6 and 7 to the mobile reference system; in all these
figures, those marked with a) and b) show the
displacement of the centre cross section of the shaft
against the time variation, in the right mass m,
corresponding to the two axes, x = x(t), y = y(t) and that u
= u(t), v = v(t); in figures denoted by c) is given the orbit
precession motion obtained by composing the two
movements, namely y = y(x) and v = v(u); figures denoted
by d) are the Frequency Response Curve and they result
from applying the Fast Fourier Transform (FFT) on the data
x + y = x(t) + y(t) and u  + v = u(t) + v(t). For figures
denoted by d) was used, for displacement, representation

on a logarithmic axis. Figure 8 summarizes the variations
of the solutions r1

2 = r1
2(ω) and r2

2 = r2
2(ω) depending on

the angular velocity of the shaft, according to equations
(34). While r2

2 < 0 for any value of the pulsation ω, figure 8
- a), r1

2 is positive when ωcr1 < ω < ωcr2,  figure 8 - b), case
in which the system is unstable, the amplitude of the
motion grows exponentially in time, according to the
equation (31).

Conclusions
The Jeffcott rotor type behaviour, whose shaft is made

of an orthotropic material, is totally different from the one
whose shaft is made of a material isotropic - case of the
circular section steel shaft - and it came to the dynamic
behaviour of the rotor with an asymmetric cross-section
of the shaft [5-7]. In the case of an isotropic material, the
orbit precession of the motion has an ellipse shape,
stationary as long as the shaft speed is constant [8]. If the
material is orthotropic, while speed remains constant, the
orbit precession of the movement shows a variety of forms,
figures 3-7 c), according to the occurring nonlinear
vibrations. The orbits precession of the movement shows
finite values   as long as the angular velocity of the shaft is
not in the area of   instability, ωcr1 - ωcr2 and values   that
grow exponentially with time,( fig. 4-c), for the unstable
area.

And in terms of Frequency Response Curve we noticed
differences between fixed coordinate system and the
mobile one. Moreover, in both cases, the differences
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Fig. 8 Finding the unstable range
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between a Frequency Response Spectrum of an isotropic
shaft, which would have, in this case, due to mass
imbalance, only one component (1X, the corresponding
shaft speed) and the corresponding orthotropic shaft are
significant. Thus, for the fixed coordinate system emerged
the following features: if ω < ωcr1, in the Response
Spectrum two components appear, one fixed, independent
of speed shaft, corresponding to the arithmetic mean of
the two critical angular speeds, (ωcr1 + ωcr2)/2, that means
17.5 Hz, and the second variable, depending on the shaft
speed (for the considered simulation ω = 70 rad/s,
corresponding to the frequency 11.14 Hz; if ωcr1 < ω < ωcr2
and so the rotor is in the unstable range, in the spectrum
there will be only one frequency component corresponding
to 17.5 Hz (average of the two critical speeds); if ω  > ωcr2,
the spectrum includes, as in the first area, two peaks, one
at 17.5 Hz and another one depending on the shaft speed
and which, for the considered case, that has the value 35
Hz (fig. 5-d). In the case of the mobile reference system,
both in the range ω< ωcr1, and for  ω > ωcr2, in the Frequency
Response Curve there are three components: one
corresponding to the shaft speed (denoted by 1X), as well
as an over- an under- first harmonic components X/2 and
5X/2, X/2 and 3X/2.

From the above, the results show a totally different
dynamic behaviour of the rotor made of an orthotropic
material compared with the one made of an isotropic

material. The created model and the code written in
MATLAB illustrate this.
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